
www.manaraa.com

ES2: A Cloud Data Storage System for Supporting
Both OLTP and OLAP

Yu Cao†, Chun Chen§, Fei Guo†, Dawei Jiang†, Yuting Lin†,
Beng Chin Ooi†, Hoang Tam Vo†, Sai Wu†, Quanqing Xu†

†School of Computing, National University of Singapore, Singapore
{caoyu, guofei, jiangdw, lin36, ooibc, voht, wusai, xuqq}@comp.nus.edu.sg

§College of Computer Science, Zhejiang University, China
chenc@cs.zju.edu.cn

Abstract—Cloud computing represents a paradigm shift driven
by the increasing demand of Web based applications for elastic,
scalable and efficient system architectures that can efficiently sup-
port their ever-growing data volume and large-scale data analysis.
A typical data management system has to deal with real-time
updates by individual users, and as well as periodical large scale
analytical processing, indexing, and data extraction. While such
operations may take place in the same domain, the design and
development of the systems have somehow evolved independently
for transactional and periodical analytical processing. Such a
system-level separation has resulted in problems such as data
freshness as well as serious data storage redundancy. Ideally, it
would be more efficient to apply ad-hoc analytical processing on
the same data directly. However, to the best of our knowledge,
such an approach has not been adopted in real implementation.

Intrigued by such an observation, we have designed and
implemented epiC, an elastic power-aware data-itensive Cloud
platform for supporting both data intensive analytical operations
(ref. as OLAP) and online transactions (ref. as OLTP). In this
paper, we present ES2 – the elastic data storage system of
epiC, which is designed to support both functionalities within
the same storage. We present the system architecture and the
functions of each system component, and experimental results
which demonstrate the efficiency of the system.

I. INTRODUCTION

With the increasing popularity of Web 2.0 applications,
massive amounts of different types of data are being generated
at an unprecedented scale. Given this rate of continuous
growth, coupled with advancement in broadband connectivity,
virtualization, and other technologies, the cloud computing
model, with its capability to dynamically provide for com-
putation and storage, has emerged as an ideal choice for data-
intensive and database-as-a-service computing infrastructures.
The need to provide for capacity both in terms of storage and
computation, and to support online transactional processing
and online analytical processing in the cloud, has given rise
to major challenges in architecting elastic and efficient data
servers.

The web-service applications provided by Internet compa-
nies such as emailing, online shopping and social networking,
are all based on online transactions that are essentially similar
to those in traditional OLTP (online transaction processing)
systems. However, in such web applications, system scala-
bility, service response time and service availability demand

higher priority than transactional data consistency, which is
the foremost requirement of traditional OLTP systems. Several
data management systems for hosting various web applications
have been designed and built, including BigTable [1], PNUTS
[2], Dynamo [3] and Cassandra [4].

To better support search and data sharing, large-scale ad-hoc
analytical processing of data collected from those web services
is becoming increasingly valuable to improving the quality and
efficiency of existing services, and supporting new functional
features. Due to the massive size of web data, traditional
OLAP (online analytical processing) solutions (i.e., parallel
database systems) fail to scale dynamically with needs. There-
fore, both commercial companies and open-source communi-
ties have proposed new large-scale data processing systems,
such as Hadoop [5], Hive [6], Pig [7] and Dryad [8].

Historically, OLTP and OLAP workloads are handled sepa-
rately by two systems with different architectures – RDBMS
for OLTP and data warehousing system for OLAP. Periodi-
cally, data in RDBMS are extracted, transformed and loaded
(aka. ETL) into the data warehouse. The system-level separa-
tion was motivated by the facts that OLAP is computationally
expensive and its execution on a separate system will not
compete for resources with the response-critical OLTP op-
erations, and snapshot-based results are generally sufficient
for decision making. Although this system-level separation
provides flexibility and efficiency, it also results in several
inherent limitations, for example, lack of data freshness in
OLAP, redundancy of data storage, as well as high startup
investment and high maintenance cost. With the emergence
of cloud infrastructures, it is therefore timely and desirable to
have an integrated system with both high-performance OLTP
and OLAP capabilities. Not surprisingly, a main-memory
resident database system that handles both OLTP and OLAP
has recently been proposed in [9].

Unlike the situation with OLTP and OLAP workloads, the
divergence between Web 2.0 application hosting and web data
analysis is mainly by design. The storage layer and processing
layer are loosely coupled so that the processing layer can
read data in any format in bulk and perform the necessary
processing to produce the indexes or views required by the
applications. The frequency at which an analytical or bulk-

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

www.manaraa.com

processing task is invoked is a business decision, and its data
freshness is therefore determined based on needs. However,
such design causes applications to rely heavily on periodically
generated meta data (e.g., indexes) due its lack of OLTP
support and transaction management. Further, due to design by
choice, these systems do not support indexing mechanisms that
facilitate ad-hoc query processing, and therefore, are limited
in use.

The goal of the epiC project [10] is to develop an elastic
power-aware data-itensive Cloud computing platform for pro-
viding scalable database services on the cloud. In epiC, two
typical types of workloads – data intensive analytical jobs
and online transactions (hereafter simply referred as OLAP
and OLTP respectively) – are supported to simultaneously and
interactively run within the same storage and processing sys-
tem. In this paper, we focus on the design and functionalities
of ES2 - the elastic storage system of epiC. We note that
the processing of OLAP and OLTP queries will ride on the
primitive data access interface provided by ES2. Particularly,
OLAP queries are processed via parallel sequential scans,
while OLTP queries are handled by indexing and localized
query optimization. E3, the elastic execution engine of epiC,
will break down the conventional database operations such as
join into some primitives, and enables them to run in filter-and-
refine phases. The motivation for this design is that, although
the widely adopted MapReduce computation model has been
designed with built-in parallelism and fault tolerance, it does
not provide data schema support, declarative query language
and cost-based query optimization. The overall architecture
of epiC system and how its components work together are
described in [11].
ES2 is essentially designed to operate on a large cluster of

shared-nothing commodity machines. It employs both verti-
cal and horizontal data partitioning schemes. In this hybrid
scheme, columns in a table schema that are frequently ac-
cessed together in the query workload are grouped into a
column group and stored in a separate physical table. This ver-
tical partitioning strategy facilitates the processing of OLAP
queries which often access only a subset of columns within
a logical table schema. In addition, for each physical table
corresponding to a column group, a horizontal partitioning
scheme is carefully designed based on the database workload
so that transactions which span multiple partitions are only
necessary in the worst case.

We also address the problem with OLTP queries and OLAP
queries of low record selectivities: It is not efficient to perform
full table scans to retrieve only a few qualified records.
However, scanning the whole table is inevitable if query
predicates do not contain attributes that determine the hori-
zontal data partitioning scheme in the system. To handle this
problem, we maintain various types of distributed secondary
indexes over the data in ES2 to facilitate different kinds
of queries. For examples, distributed hash indexes support
single-dimensional exact-match queries, distributed B+-tree-
like indexes support single-dimensional range queries, and dis-
tributed multi-dimensional indexes support multi-dimensional

range and KNN queries. P2P overlays provide good structures
for supporting distributed searches [12]. However, we cannot
afford to implement and maintain multiple overlays in the clus-
ter for different types of distributed indexes. Consequently, we
have developed a generalized indexing framework, which pro-
vides an abstract template overlay based on the Cayley graph
model. Based on this framework, the structure and behaviors
of different overlays can be customized and mapped onto the
template, thereby overloading the overlay with multiple search
indexes. In addition, we have also developed a distributed
bitmap index scheme to support more indexed columns and a
wider range of queries. Unlike existing distributed file systems,
the ES2 provides the basic indexes as in a conventional DBMS.

In summary, we design ES2 – a cloud data storage system
to support both OLTP and OLAP workloads. The system
provides data access interfaces for upper layer applications. To
facilitate efficient processing of ad-hoc queries, its distributed
indexing component supports declaration of indexes over the
distributed data and hence provides efficient data retrieval. To
validate the efficiency of each component, we conduct exten-
sive experiments on a commodity cluster. The results confirm
the benefit of providing distributed indexes and accesses to the
data for both OLTP and OLAP queries.

The rest of this paper is organized as follows. Section II
introduces the previous work relevant to our storage system.
Section III illustrates the overall system architecture and
briefly discusses the system components, whose details are
then elaborated in Section IV, V and VI. In Section VII, we
present performance results obtained from the current system
snapshot. We conclude in Section VIII.

II. RELATED WORK

Distributed and Parallel Databases. A thorough review on
the techniques used by various research and commercial paral-
lel database systems is presented in [13]. epiC is designed to
provide dynamic scalability while traditional parallel database
systems fall short of scaling dynamically with load and need.

More recently, some commercial parallel database systems
have started to integrate the MapReduce framework into their
execution engines in order to implement user-defined functions
which lack efficient support in conventional parallel database
systems. Aster [14] and Greenplum [15] showed that the
combination of MapReduce and other relational operators can
improve the query processing performance of the system.

Cloud Data Serving Systems. Dynamo [3], a highly available
key-value store in cluster environment developed by Amazon,
chooses to provide “always writable” data availability with the
trade-off eventual consistency. Cassandra [4] is a distributed
storage system for managing very large amounts of structured
data spread out across many commodity servers. Cassandra
provides highly available service with no single point of failure
with the use of peer-to-peer model. We notice that the design
of Dynamo and Cassandra are mainly focussed for web OLTP
workloads. Bigtable [1] also provides record oriented access
to very large tables which are distributed in a commodity

2

www.manaraa.com

cluster. Note that in these systems, the support of secondary
indexes has not been reported in the system design. PNUTS
[2], the cloud data platform from Yahoo!, provides data storage
organized as hashed or ordered tables. In addition, it supports
record-level consistency guarantees.

Data Freshness. Data freshness is a very important attribute
of data quality and has been extensively studied in various
fields [16], [17], [18]. Intuitively, the concept of data freshness
is a measure on how old are the data. In traditional OLAP
systems (i.e., data warehouses), freshness is studied through
the currency factor [16] in the context of view materialization,
which introduces potential inconsistencies with the sources
(i.e. OLTP systems) and thus makes the warehouse data
become out-of-date. In ES2, we measure the data freshness
by adopting a currency metric [16] for the currency factor.
More specifically, when an ad-hoc OLAP job is launched on
a dataset that is stored in our storage system and is also being
manipulated by OLTP queries, we measure how older is the
visible version of the dataset to the analysis of the OLAP job,
compared to the up-to-date version of the data applied with
OLTP updates arriving during the execution of the OLAP job.

III. SYSTEM OVERVIEW

In this section, we outline the overall architecture of ES2,
as well as the design principles and assumptions based on
which our system is built. We briefly outline the functions of
each system component and will elaborate the details in latter
sections.

Data Model. We exploit the well-understood relational data
model. Although this model has been criticized as an overkill
in cloud data management and is replaced by the more
flexible key-value data model for systems such as BigTable [1],
PNUTS [2], Dynamo [3] and Cassandra [4], we observe
that all these systems are transactional-oriented with heavy
emphasis on the handling of OLTP queries. On the other hand,
systems that focus on ad-hoc analysis of massive data sets
(i.e., OLAP queries), including Hive [6], Pig Latin [19] and
SCOPE [20], are sticking to the relational data model or its
variants.

Since the objective of epiC and therefore ES2 is to provide
database-as-a-service and efficiently support both OLTP and
OLAP workloads, we choose the relational model for our stor-
age system. However, we also enhance the use of this model
in our system according to the characteristics of transactional
data via flexible data partitioning schemes as described below.

Data Partitioning. ES2 employs both vertical and horizontal
data partitioning schemes. First, we optionally divide columns
of a table schema into several column groups based on the
query workload. Each column group contains columns that
are often accessed together and will be stored separately in a
physical table.

Such vertical partitioning scheme benefits the OLAP
queries, which often require only a subset of columns within
a table. Additionally, transactional accesses to data records
often update the values of some columns in a column group.

Hence, the vertical partitioning technique improves the overall
performance of the system significantly by reducing the I/O
cost in most cases.

We then further horizontally partition the data of each
column group when the system actually stores the data in
the physical table corresponding to this column group. A
horizontal partitioning scheme is carefully designed based on
the database workload to reduce or even eliminate distributed
transactions across storage nodes and thus simplify the trans-
action management in the system.

Note that since we have designed the vertical partitioning
scheme based on the trace of query workload, tuple re-
construction is only necessary in the worst case. Moreover,
since each column group still embeds the primary key of data
records as one of its componential columns, to re-construct
the tuple, ES2 collects the data in all column groups using the
primary key as the the selection predicate.

Transaction Management. In ES2, with OLAP and OLTP
queries operating within the same storage system, the problem
will surely become more complicated than in pure OLTP sys-
tems. In our recent study [21], we work towards the ultimate
objective of managing transactions on data that are accessed
simultaneously by both OLTP and OLAP queries. This study
investigated various aspects, including the distributed data
structure together with the replication and transaction man-
agement, in a coherent system. ES2 adopts similar approach
in which the replication is mainly used for load balancing
and data reliability requirements, while the multi-versioning
transaction management technique supports both OLTP and
OLAP workload. In particular, the OLTP operations access
the latest version of the data, while the OLAP data analysis
tasks execute on a recent consistent snapshot of the database.

Distributed
Indexing

Data
Import
Control

Data
Access
Control

Meta−data
Catalog

Distributed File System

(DFS)

Write
Cache

Import

Sources
Data

Physical
Storage

Data Access Interface

Data Manipulator

Manager

Fig. 1. The architecture of ES2

Figure 1 illustrates the architecture of ES2 storage system,
which comprises of three major modules: Data Import Con-
trol, Data Access Control and Physical Storage.

In ES2, data can be fed into the system via the transactional
operations which insert or update specific data records or via
the data import control module which supports efficient data
bulk-loading from external data sources. The data could come
from databases stored in conventional DBMSs, standalone
(plain or structured) data files, and intermediate data that are
dynamically generated by cloud applications. We also support
the write-back of results by E3, the analytical execution engine

3

www.manaraa.com

of epiC, which in the meantime retrieves its input data from
our storage system. The data import control module consists of
two sub-components, namely import manager and write cache.
The import manager has separate protocols to communicate
with different data sources. The write cache resides in memory
and temporarily buffers the imported data that are eventually
flushed to the physical storage when the write cache is full.
The write cache serves multiple purposes and will be discussed
in detail in Section IV-B. It is notable that the data import
control module also supports reversely exporting data from
ES2 to other storage systems.

The physical storage module contains three main compo-
nents: distributed file system (DFS), meta-data catalog and
distributed indexing. The DFS is where the imported data are
actually stored. Essentially, we treat it as a raw byte device
and rely on its built-in capacities of fault tolerance and load
balancing to achieve high data scalability and availability.
With minor modifications, this component is replaceable with
most of the existing distributed file systems. In our current
development, we make use of the Hadoop [5] DFS system
(HDFS) for implementation and validation. The meta-data
catalog maintains the meta information about the tables in
the storage as well as various essential fine-grained statistics
information for the data access control module to operate
efficiently.

For OLTP queries and OLAP queries with low record
selectivities, it is usually un-affordable to sequentially scan
the whole dataset for just a few records, even with the
help of parallel scanning. With hash-based (or range-based)
horizontal data partitioning, the system can be considered as
being equipped with a hash index (or range index) over the
underlying storage layer. This built-in index can be used to
facilitate fast data locating. However, the data partitioning
scheme is typically based on a fixed set of table attributes. If
the query does not use these attributes in the search conditions,
a full table scan is still unavoidable. The solution to this
problem is to build secondary indexes. To this end, we have the
distributed indexing sub-component which maintains various
distributed secondary indexes over the data stored in DFS.

The data access control module is responsible for perform-
ing data access requests from both OLAP jobs executed by
E3 and OLTP requests submitted by end users. It has two
sub-components: data access interface and data manipulator.
The data access interface parses the access requests into
corresponding internal representations, with which the data
manipulator then chooses the optimal data access plan (parallel
sequential scan or index scan or hybrid) for locating and
operating on the target data stored in the physical storage.

In Section IV, we will describe the data import control,
in conjunction with the physical storage, except for the dis-
tributed indexing, which instead will be discussed in Sec-
tion V. We will describe the data access control in Section VI.

IV. DATA IMPORT AND PHYSICAL STORAGE

In this section, we discuss how the data import module
works together with the physical storage module to import

data into our storage system.

A. Import Manager

ES2 supports three main types of external data sources:
database tables in traditional DBMSs, stand-alone files which
are either plain (e.g., txt and csv) or semi-structured (e.g.,
XML and HTML), and intermediate data that is dynamically
generated by other applications, such as the results of an
analytical task executed by E3 or by the data stream from
a remote server. For each data source, there is a tailored data
adaptor, through which the import manager communicates
with the data source.

The import manager works as follows. Given a data source
whose data are to be imported, the manager creates and
launches a pair of the corresponding data adaptor and an
accompanying data importer. The data importer is a daemon
process forked as the child of the import manager process, and
takes over the rest of the data import task.

First of all, the importer acquires the target data schema
either by directly contacting with the data source (in case of
database tables) or via manual configuration. For efficiency
and security reasons, users can define which part of the data
source they wish to export to ES2 for processing purposes. The
importer will perform a schema mapping, when there is some
inconsistency between the original data schema and the target
schema. Moreover, it determines the data partitioning scheme
and notifies the distributed indexing component about the set
of secondary indexes to be built, which could be by default
and/or user specified. The information of data partitioning and
indexes, along with the target schema itself, will be stored
in the meta-data catalog. Besides, relevant statistics are also
initialized and will be updated as the data import progresses.

Subsequently, the data are imported from the data source
and parsed into one or multiple physical tables. For each table,
we allocate a write cache in memory to temporarily buffer the
records. When the write cache is full, the records are flushed
to the underlying DFS. In this way, we reduce the number of
costly I/O requests to DFS. This cycle is repeated until the
whole table has been written to the DFS.

Note that the import manager supports parallelism in two
ways. First, multi users can concurrently perform the import
function. Second, it can process each import request from a
user in fine-grained manner: loading multi tables in parallel
from the external data source into ES2. However, the perfor-
mance of the import operation is actually affected by other
two bottlenecks: the read throughput from the data source and
the write throughput of the underlying DFS.

B. Write Cache

The purpose of allocating a write cache in the importing
process is manifold. First, in the write cache, the data records
are organized into pages following a specific storage layout
PAX [22]. A record will be completely included by one
specific page. Second, the distributed indexing component
works more efficient in a bulk-loading way, after the write
cache becomes full. For each record, its key value and the id

4

www.manaraa.com

of the page containing it are capsuled as an index entry and
published into the cluster. The write cache allows the indexing
component to package the inserted index entries to the same
index node in a single message, which reduces the cost of
routing. Third, it significantly reduces the number of function
calls to the underlying DFS, thus leading to a big cost saving
on the invocation overhead. Last but not the least, the relevant
table-level and record-level statistics in the meta-data catalog
are updated in a batch. Therefore, the overhead incurred by
the locking mechanism adopted for the meta-data consistency
is also reduced.

PAX Page Layout. As mentioned before, we treat the DFS as
a raw byte device, which means that tables are stored in the
DFS as binary byte streams. Therefore, we need to implement
a page-based storage layout, to explicitly interpret the output
byte streams from the DFS into records.

We employ the PAX [22] (Partition Attribute Across), which
is essentially a DSM-like [23] organization within an NSM
(N-ary Storage Model) page. In general, for a table with n
columns, its records are stored into pages. PAX vertically
partitions the records within each page into n minipages, each
of which consecutively stores the values of a single column.

While the disk access pattern of PAX is the same as that
of NSM and does not have an impact on the memory-disk
bandwidth, it does improve on the cache-memory bandwidth
and therefore the CPU efficiency. This is because of the
fact that the column-based layout of PAX physically isolates
values of different columns within the same page, and thus
enables an operator to read only necessary columns, e.g. the
aggregated columns that are referred in an aggregation OLAP
query. The use of PAX layout also has great potential for data
compression. For each column, we add a compression flag
in the header of a PAX page to indicate which compression
scheme is utilized.

Memory Management of Write Caches. Multiple tables can
be imported simultaneously, leading to more than one write
caches being allocated in memory. All these caches share
a limited amount of memory. Thus, the memory allocation
among them is dynamically adjusted, based on the factors such
as the table sizes, the data arrival rates, etc. When necessary,
some write caches could be suspended and their records are
temporarily dumped to the local disk, in order to give way to
other caches with higher priorities. Once more free memory is
available (e.g., some write caches have finished their jobs and
thus been deallocated), these suspended caches are resumed
and their records are read back from the local disk.

C. Meta-data Catalog

The meta-data catalog provides (a) schema storage, update
and retrieval, (b) statistics storage, update and inquiry, and
(c) runtime statistics collected via daemon processes. The
catalog will be accessed by the import manager, write cache,
distributed indexing and data manipulator.

The information stored in the meta-data catalog includes:
(1) table ownerships and definitions such as column names,

data types and primary/foreign key(s); (2) dataset/partitioning
information such as collocated tables, partitioning keys, clus-
tering keys (i.e., sort orders); (3) table cardinalities, single or
multiple dimensional histograms built on columns, available
secondary indexes and table access statistics.

Since data access plans are composed based on the meta-
data in the catalog, it is important that ES2 maintains a
consistent view for the meta-data. A naive solution is to put
the whole catalog in a single node and adopt a simple locking
mechanism with fine granularity to enable the data synchro-
nization. The locking mechanism includes a sharable read lock
and an exclusive write lock. However, in order to improve
the scalability and availability of the catalog, in reality we
choose to deploy the catalog to a set of distributed nodes and
add the data replication mechanism with an appropriate data
synchronization technique. In particular, we apply different
consistent model for different type of meta-data, e.g. strict
consistent for schema information and relaxed consistent for
runtime statistics.

V. DISTRIBUTED INDEXING

In ES2, the distributed indexing subsystem maintains sec-
ondary distributed indexes over the data stored in the under-
lying DFS. It works as a middleware between the data access
control module and DFS, interacts with the DFS and provides
data retrieval interfaces for the data manipulator.

The reasons for distributing the indexes are twofold. On
one hand, the size of an index is proportional to the size of
its indexed data. Since we are managing the cloud data which
typically are huge in volume, a single server machine (referred
to as an index node) is usually not capable of storing all the
indexes. On the other hand, the indexes are employed to serve
high load of concurrent online queries. As such, a single index
node itself may become the performance bottleneck, when
dealing with a large number of concurrent requests.

data
node

index
node

index
node

node
index

index
node

data

data
node

node

DFS

Cayley−based
P2P overlay

page fetching

key routing

result records

data search(key)

node
data

manipulator

Fig. 2. The Distributed Secondary Index

In our system, both data nodes and index nodes share the
same set of machines, as depicted in Figure 2. In particular,
each machine in the cluster can assume two roles: a data node
in DFS and an index node in the distributed indexes. Each
index node maintains a portion of the distributed indexes,
which can be applied to retrieve data from the underlying DFS.

5

www.manaraa.com

An index page and its correspondingly indexed data could be
hosted by two distinct machines.

When a specific record is accessed, the system first checks
the meta-data catalog for available indexes. If an index can
be exploited to facilitate the search, the system will connect
to the corresponding index node to retrieve the index entry
for the record. The index entry contains the index key and
the page ID, which can be used to retrieve the physical PAX
page in DFS. Then, we parse and assemble the record from the
PAX page. Since a page of the table could be replicated by the
DFS across several data nodes, and it is the duty of the DFS to
decide from which data node the page should be fetched. It is
notable that the indexes in ES2 consist of secondary indexes,
and thus index pages are stored independently from data
pages. ES2 also provides another option for data collocation
by implementing materialized indexes or materialized views.
This approach improves the query processing time by reducing
the network I/Os and disk I/Os. The additional storage cost of
this approach is acceptable in the case the sizes of data records
are relatively small.

Recently, we have proposed two types of distributed sec-
ondary indexes for cloud data: the distributed B+-tree-like
index which supports one-dimensional range queries [24]
and the distributed multi-dimensional index which supports
multi-dimensional range queries and KNN queries [25].
Both approaches share the common idea of two-level index
techniques which combine the P2P routing overlay with disk-
resident local indexes in different index nodes. This idea
can also be adopted when deriving new types of distributed
indexes.

It is certainly desirable to include various types of dis-
tributed indexes in our system in order to facilitate different
kinds of queries. However, we cannot afford to implement
and maintain multiple P2P overlays in our cluster. As has been
shown in [26], many P2P overlays are essentially instances of
the Cayley graph, and consequently we develop a generalized
indexing framework, which provides the implementation of an
abstractive template overlay based on the Cayley graph model.

The framework provides several interfaces to customize the
structure and behaviors of an overlay. An overlay manager
is established to maintain the overlay instances. When we
intend to create a new type of distributed index, we first
check the overlay manager for existing overlay instances. If
none of them is applicable for building the new index, a
new overlay instance is initialized via the overlay template.
By implementing the interfaces, we can define the routing
protocols and key assignment policy, which are tailored for the
new distributed index. In our system, we provide four basic
types of indexes, distributed bitmap, hash, B+-tree-like and
kd-tree-like indexes. The detailed design and implementation
of the generalized framework for indexing cloud data are
presented in [27].

We utilize the TCP protocol for message passing in the P2P
overlay. One message could be forwarded by multiple index
nodes before finally reaching its destination. Since setting
up a new TCP connection for two nodes is expensive, we

prefer keeping the established connection as long as there are
message flow between the nodes. However, each node can only
maintain a limited number of TCP connections. Therefore, we
develop a connection manager at each index node to monitor
the real-time network status and decide how to dynamically
create and maintain the set of TCP connections in the overlay.
The connection manager records the message routing patterns
and always try to keep the most valuable connections.

Our indexing system is designed to support a large number
of concurrent distributed indexes. As such, each index node
will have to maintain many local indexes belonging to different
distributed indexes. To improve the search efficiency, pages of
local indexes can be buffered in memory. Due to the limited
memory size, it is impossible to accommodate all local indexes
in the memory. We thereby develop a buffer manager for each
index node, which adaptively adjusts the index pages to be
kept in memory, according to the current query workload.

VI. DATA ACCESS PROCESSING

The data access control module of ES2 deals with the
data access requests for processing OLAP queries (executed
by the analytical execution engine E3) and OLTP queries
(submitted by application users). In this module, the data
access interface is exposed to handle these requests, while
the data manipulator is in charge of the manipulation of the
data stored in the physical storage, according to the interpreted
commands passed by the data access interface. Note that to
prevent the data manipulator from being the bottleneck, ES2

can replicate and deploy this component on multiple nodes to
share the workload of incoming data access requests.

A. Data Access Interface

The data access control module defines two independent
interfaces, namely OLTP interface and OLAP interface, for
OLTP queries and OLAP queries respectively. This is bene-
ficial as these two types of query have diverse data access
patterns and thus present different requirements on the data
access interface. We separately discuss these two interfaces as
follows.

OLTP Interface. For OLTP workload, data is typically ac-
cessed via a point or small-range query. With this type of
query, only one or several records within a single table will
be located and manipulated. We define three major APIs for
this OLTP workload:

• get(table, key, columns)
• put(table, record)
• delete(table, key)

The parameter table represents a logical table, whose
internal storage consists of one or multiple physical tables
through vertical partitioning (refer to Section III). The key is
a set of conjunctive or disjunctive column selection conditions,
and is used for locating the target records, which are then either
retrieved by the get operation or eliminated by the delete
operation. The columns is the set of projected columns out of
the target records. The record is a new record to be inserted

6

www.manaraa.com

into the table by the put operation. The operation of updating
a record is realized as appending a new version of the record
to the system, as will be discussed in Section VI-B.

OLAP Interface. For OLAP workload, data is usually ac-
cessed via batch processing operations, which means not only
that a large number of records are read, but multiple tables
are also accessed within a single query.

Compared to MapReduce-based systems, in which all par-
ticipating tables are sequentially scanned in parallel and un-
qualified records are filtered out by Map tasks, ES2 provides
an additional index scan functionality, which is especially
useful when the set of qualified records is merely a small
portion of all records that would be touched by the sequential
scan. Therefore, we allow the execution engine E3 to push
the record selection and projection conditions, along with the
table names, through the OLAP interface and into the data
manipulator. As a result, only required columns of qualified
records will be returned to the execution engine. At the level
of the data manipulator, we also consider further supporting
some other relational operations (e.g., aggregation and sorting)
that could enable additional optimizations (e.g., early aggre-
gation [28] and shared scan [29]).

The OLAP interface is basically in the iterator mode [30],
with three major APIs: open(), next() and close().
At the beginning, the open function is called to initialize
the scan of one logical table, parameterized by the record
selection and projection conditions. These parameters will be
used by the data manipulator to determine data access plans
(e.g., scanning a specific data partition or performing an index
scan). open returns when the preparation of the underlying
data manipulator is done. After that, the next function is
repetitively invoked, with a group of records returned each
time. After all the qualified records are retrieved, the close
function does some house keeping tasks, such as closing up the
physical tables and updating the relevant data access statistics
in the meta-data catalog.

It is possible that the execution engine E3 also deals
with data formats other than the record representation (e.g.,
key-value pairs). Therefore, inside the next function we
implement a data format translator which optionally converts
the retrieved records into the desired formats before returning
them to the execution engine.

B. Data Manipulator

1) OLAP and OLTP Isolation: To handle both OLAP and
OLTP workload within the same storage, we adopt the multi-
versioning strategy. Specifically, we keep multiple versions of
the data in the system. Each version is assigned with a version
number. When updating a record, we actually append a new
version of the record to the system. We set a threshold up to
which each record can maintain a set of versions. When the
total number of versions maintained by a record exceeds the
threshold, the dead (obsolete) versions will be discarded.

The multi-versioning strategy simplifies our design of query
processing. In a system that support both OLAP and OLTP
queries, we cannot adopt the locking mechanism, due to

its high overheads (e.g. if an OLAP query scans the whole
dataset and concurrent OLTP queries are being processed
simultaneously, locking the whole dataset is not preferred).
Instead, we adopt a timestamp-based approach. A loosely
synchronized clock in the system can be implemented as
follows. We discretize the time dimension into epochs. A
node in the cluster plays as the timestamp authority (TA)
and increases the epoch after every period of time (which
is configurable by the user). The TA then messages the new
epoch to all other nodes in the cluster, and the whole system
will move to this new snapshot. Possible failures of the TA can
be handled by a stand-by node. We mark each data version
with a timestamp, indicating when it is created. When an
OLAP query q is submitted, we generate a timestamp ts for it.
In ES2, we are trying to provide the snapshot consistency for
OLAP queries. Therefore, for each record, we use the version,
whose timestamp is just before ts, to answer the query q. If
that version is being discarded due to too many updates, we
choose to use the latest version. In that case, the snapshot
consistency cannot be guaranteed and we will notify the users
about it.

With the multi-versioning strategy described above, the put
and delete operations in OLTP are actually isolated from
the get operation in OLTP and the next operation in OLAP.
In the following, we concentrate on the pure record reading
issues for both OLTP queries and OLAP queries.

2) Data Access Optimizer: Essentially, the record retrieval
commands passed from the OLTP and OLAP interfaces are
the same and thus will be uniformly processed by the data
manipulator. There are two data access methods, parallel
sequential scan and index scan, for record retrieval.

Note that the OLTP and OLAP queries only work with the
logical tables via the data access interface and are transparent
with the physical organization of these tables. However, the
columns of a logical table are organized as column groups
(refer to Section III), each of which is stored in a separate
physical table. Therefore, the data manipulator may need to as-
semble projected records for a logical table with corresponding
records of some or all componential physical tables. In case
of sequential scan, the data manipulator is able to read records
belonging to different horizontal partitions of a physical table
in a parallel manner (under this situation, an OLAP query will
invoke multiple next functions simultaneously, one for each
partition). This feature of parallel scanning is analogous to the
way how a MapReduce job reads its input data.

For OLTP queries and OLAP queries with low selectivities,
the various distributed secondary indexes maintained by the
distributed indexing system enable the index scan alternative
to the parallel sequential scan. However, index scan is not
necessarily a better choice than parallel sequential scan. First
of all, the appropriate indexes are not always available. In
addition, the underlying DFS usually has a very high latency
for random access [31]. As a result, even if the index traversal
is sufficiently fast, the overall delay including reading records
from DFS, would be large. This means that, in many cases
parallel sequential scan would still be preferred. Therefore,

7

www.manaraa.com

TABLE I
PARAMETERS FOR DATA ACCESS OPTIMIZER

Parameter Definition
cs cost ratio of sequential read in DFS
cr cost ratio of random read in DFS
c′r cost ratio of random read with sequential offsets
sd size of a data chunk
f(Q) number of I/Os for query Q
g(Ti, Q) number of Ti’s tuples that satisfy the predicates of Q
n total number of nodes in the cluster

the data manipulator cannot always assume that index scan is
more suitable for OLAP queries with low selectivities.

To address the above problem, we introduce a data access
optimizer within the data manipulator component, which dy-
namically chooses the best data access scheme for a specific
query, relying on the statistics stored in the meta-data catalog.

The core issue of data access optimization is finding the
most efficient access method to read a specified set of records
from each individual physical table involved by the query.
The naive solution would be based on a threshold of the
selectivity. In other words, for each physical table, if the
query selectivity is below some predetermined threshold, we
shall choose index scan; otherwise, we shall choose parallel
sequential scan. Clearly, this solution lacks of adaptability.
Even if we assume that the cluster of nodes is static (i.e.
with a fixed configuration), the possibility of having a sub-
optimal access method would be high, not to mention that the
cluster configuration, as well as the query workload, changes
frequently. Therefore, we instead adopt a cost-based approach.

For simplifying the discussion, we list the parameters used
in our cost model in Table I. As ES2 adopts the DFS as the
underlying storage system, the data is typically partitioned
into equal-size (sd) data chunks. Given a query Q, we define
function f(Q) to denote the size of data involved in the
processing. For parallel sequential scan, if table T1,...,Tk are
involved in query Q, f(Q) is computed as

∑k
i=1 |Ti|. In index

scan, f(Q) is estimated as
∑k

i=1 g(Ti, Q), where g(Ti, Q)
denotes the number of tuples in Ti that satisfies the predicates
of Q based on our histograms.

In particular, the costs of different processing strategies are
estimated as:

1) The latency of using parallel sequential scan to process
Q can be computed as:

cpscan = �f(Q)
sdn

�cssd (1)

Equation 1 is based on the assumption that data are
uniformly distributed over the cluster and each node
only needs to scan its local data chunks. In real systems,
although the assumption is not always satisfied, Equation
1 provides a good enough estimation for evaluating the
performance of parallel sequential scan.

2) In index scan, we group the requests to the same data
chunk and perform the random access in sequential
offsets. This strategy is based on the observation in [31]
that the cost of random access via sequential offsets (c′r)
is far less than the cost of random access via random

offsets (cr). Suppose the retrieved tuples are uniformly
distributed over the data chunks. We have

∑k
i=1 |Ti|
sd

data chunks. And the latency of index scan is estimated
as:

ciscan =
∑k

i=1 |Ti|
sd

cr +
k∑

i=1

g(Ti, Q)c′r (2)

In above equation, we discard the cost of accessing
index, as such cost is negligible compared to the data
retrieval cost.

Given a query, the optimizer estimates the costs of different
strategies. If cpscan > ciscan, the parallel sequential scan
is used to process the query. Otherwise, the index scan is
used. Periodically, we run a micro-benchmark to test the
performance of raw random and sequential I/Os and update
the values of cs, cr and c′r, respectively.

VII. PERFORMANCE STUDY

In this section, we evaluate the performance of our data stor-
age system, which resides in an in-house commodity cluster
awan constructed for the epiC project [10]. awan contains
72 cluster nodes, which are connected via three switches. Each
node is equipped with Intel X3430 2.4 GHz processor, 8 GB of
memory, 2x500GB SATA disks, gigabit ethernet, and operates
CentOS 5.5. The cluster nodes are evenly divided into three
racks and are used to accommodate our data storage system.

In what follows, we study the performance of ES2 in three
parts. The first part is the evaluation of the data import and
storage components. The second part presents the experimental
results of the distributed indexing component. The last part
measures the data freshness that ES2 can provide for OLAP
queries. In this paper, we mainly describe the design and
implementation of ES2, the storage manager of epiC cloud
system, and provide the performance evaluation of its main
functionalities. The processing of OLAP and OLTP queries
will ride on the functionalities provided by ES2, and bench-
marking of the whole epiC system is our future work.

A. Data Import and Storage

We make use of the HDFS version 0.20.1 for the DFS
component of ES2. In our experiments, we fix the size of
a data block to 64MB and replicate the block three times. We
also fix the PAX page size to 8KB and utilize the TPC-H [32]
dataset with scales ranging from 30GB to 270GB. Further, we
also vary another set of experimental parameters which are
discussed in the following.

1) Data Loading: We first evaluate the performance of
loading TPC-H datasets from an external DBMS (MySQL
5.0.77 residing in a node of awan) into ES2. We have
two approaches for data loading: direct import which fetches
data with the aid of MySQL’s built-in data export tool
mysqldump; MapReduce import which runs a MapReduce
job reading records from MySQL via JDBC. The performance

8

www.manaraa.com

 0

 10

 20

 30

 40

 50

270240210180150120906030

Lo
ad

in
g

Sp
ee

d
(M

B/
s)

Dataset Size (GB)

MapReduce Import
Direct Import

(a) Data Loading Speed

 0

 5

 10

 15

 20

 25

 30

 35

 40

270240210180150120906030

To
ta

l L
oa

di
ng

 T
im

e
(x

10
00

s)

Dataset Size (GB)

MapReduce Import
Direct Import

(b) Total Data Loading Time

Fig. 3. Performance on Loading TPC-H Dataset of Different Sizes with 5 Data Nodes

scalability is studied in two aspects: varying the dataset sizes
and varying the number of data nodes in the system. Here we
fix the size of each write cache to 64MB.

Figure 3 shows the results of loading TPC-H datasets of
different sizes into ES2 with 5 data nodes. The total load-
ing time includes fetching records from MySQL, assembling
records into PAX pages in write caches and finally flushing
these PAX pages into the underlying HDFS. It can be observed
that MapReduce import is much slower than direct import, due
to the very inefficient JDBC as well as the intermediate data
that are generated by the MapReduce job and materialized in
HDFS. Moreover, the data loading speeds of both approaches
are not very high (≤35MB/s), compared with the network
speed (∼110MB/s) and the write speed (∼50MB/s) of HDFS
with 5 data nodes and 3 replications. The key reason is that the
MySQL becomes a performance bottleneck: both approaches
can only sequentially retrieve records from MySQL at very
low speeds.

We also tested the loading of a 270GB TPC-H dataset
into ES2 with various numbers of data nodes in the system
(ranging from 5 to 35 nodes). The results (not shown) show
that the increasing number of data nodes does not significantly
improve the loading time in both approaches, direct import
and the MapReduce import. It is because of the fact that the
performance of the import function is actually affected by two
bottlenecks: the read throughput from the external data source
and the write throughput of the underlying DFS.

2) Effect of Write Cache Size: In this experiment, we inves-
tigate how the size of the write cache (refer to Section IV-B)
will affect the overall data loading performance. We import
30GB TPC-H dataset from MySQL into ES2 with 5 data
nodes. In the meantime, we vary the size of each write cache.
The minimum size is 8KB which is just enough for one PAX
page, while the maximum size is 64MB which is also the data
block size of the underlying HDFS. We expect that the total
loading time will decrease as the cache size increases, which
agrees with the experimental results shown in Figure 4.

Moreover, the total loading time drops readily till the write
cache size increases to 1MB (128*8KB). After that, when
the write cache size increases from 1MB to 64MB, the total
loading time keeps growing downwards but at a extremely

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

1 2 4 8 16 32 64 128
256

512
1024

2048
4096

8192

Lo
ad

in
g

T
im

e
(s

)

Write Cache Size (Unit: 8 KB)

Write Cache

Fig. 4. Performance on Loading 30GB TPC-H Dataset into HDFS with 5
Data Nodes, Varying the Write Cache Size

slow speed. Therefore, setting the write cache size to 1MB can
maintain a good balance between the data loading performance
and the total memory overhead incurred by the write caches.

3) Pressure Test on Meta-data Catalog: In this test, we
study the scalability and availability of the catalog when mul-
tiple clients send massive read/writes requests to it. Each client
is represented by a separate thread and submits read/write
requests on entries within the catalog. All the clients start up
simultaneously and send their requests to the catalog concur-
rently. Each client submits its own requests in a sequential
order and waits till the previous request gets acknowledged
before sending the next request.

We vary both the total number of clients and the number of
nodes maintaining the catalog. The content of the meta-data
catalog is fixed and evenly range partitioned over all catalog
nodes. In our test, the type of each request sent by a client
follows these distributions, uniform, Gaussian, exponential and
Poisson. The client will submit a read request if the calculated
probability is below 0.5, and a write request otherwise.

Figure 5 shows the throughputs, i.e. the total number of
requests processed by the meta-data catalog per second, under
different parameter settings. In Figure 5(a), it can be observed
that the meta-data catalog is able to always maintain a stable
and relatively high throughput, no matter how the client num-
ber and the total request number change. It is also obvious that
the throughputs are at different levels under various probability
distributions: uniform distribution has the highest throughputs,
followed by Poisson and exponential, and Gaussian has the
lowest throughput. The reason for such difference is the

9

www.manaraa.com

 60

 70

 80

 90

 100

 110

 120

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

in
 x

10
00

 r
eq

ue
st

s/
s)

of Clients

Uniform
Gaussian

Exponential
Poisson

(a) With 5 Catalog Nodes, Varying Client #

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

in
 x

10
00

 r
eq

ue
st

s/
s)

of Catalog Nodes

Uniform
Gaussian

Exponential
Poisson

(b) With 1200 Clients, Varying Catalog Node #

Fig. 5. Performance on Concurrently Sending Read/Write Requests to Meta-data Catalog

percentage of write requests within all the requests sent by a
client. Intuitively, with a fixed total number of requests, more
write requests would lead to longer processing time, as write
is expected to be more expensive than read due to locking.
We realize that Gaussian distribution always results in the
highest percentage of write requests, followed by exponential
and Poisson, and uniform generates the lowest percentage.
This percentage order is consistent with the observations from
Figure 5(a).

In addition, Figure 5(b) illustrates that the total throughput
increases almost linearly with the number of nodes maintain-
ing the catalog. As the number of catalog nodes increases, each
node host a smaller portion of the meta-data catalog content.
The resulted benefit is two-fold. On one hand, the time spent
on entry search is reduced. On the other hand, the average
overhead of entry consistency control also drops.

B. Distributed Indexes

We now present the results of scalability tests on the
distributed indexes in ES2. We measure the index search
latency and throughput when varying the size of the dataset
and the number of index nodes in the system. The size of
TPC-H dataset ranges from 30GB to 270GB. We also test the
performance of the indexes with various system sizes, ranging
from from 5 index nodes to 35 index nodes. The default value
of the dataset size and the system size are 30GB and 5 nodes
respectively. We populate 100 client threads at each node to
continuously submit requests into the system. A completed
requests will be immediately followed up by another request.

In this experiment, we employ distributed indexes to im-
prove the performance of the processing of the following
queries, whose predicates do not contain the attributes that
are used to partition the base tables.

Q1: SELECT * FROM Part WHERE partname=’x’

Q2: SELECT custkey, count(orderkey), sum(totalprice)
FROM Orders
WHERE totalprice ≥ y and totalprice ≤ y + 100 and

orderdate ≥ z and orderdate ≤ z + 1 month
GROUP BY (custkey)

In particular, we build a distributed hash index on the
partname attribute of the Part table and a distributed kd-tree-

like index on the (totalprice, orderdate) attributes of the Orders
table, by instantiating the corresponding type of indexes from
the generalized indexing framework developed in ES2.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

30 60 90 120 150 180 210 240 270

E
xa

ct
-Q

ue
ry

 L
at

en
cy

 (
m

se
c)

Dataset Size(GB)

Adaptive cached connections
Ad-hoc point-to-point connections

Fig. 6. Exact-match Query (Q1) Latency

The scalability of the distributed hash index is well-
demonstrated in Figure 6. The system has nearly constant
index search latency when we increase the size of dataset,
especially with the use of adaptive cached connections. Setting
up ad-hoc point-to-point connections in order to send only a
message between two index nodes is expensive since creating a
new TCP connection incurs additional overheads such as hand-
shaking time delay and memory buffer for the connection.

Instead, in our approach, referred to as adaptive cached
connections, each index node in the cluster adaptively keeps a
limited number of established connections to other frequently
accessed nodes in the distributed index overlay. In this way,
we do not need to pay the cost of creating new connections
when sending a message between two index nodes. This is the
reason why the system suffers from much higher index search
latency in the case of using ad-hoc point-to-point connections
compared to the adaptive cached connections approach.

In Figure 7(a), the advantage of the adaptive cached con-
nections approach is again confirmed. Since the persistent con-
nections are always available to use, the network bandwidth
in the distributed index overlay is significantly improved.
Therefore, the system with adaptive cached connections has
much higher throughput compared to ad-hoc connections.
In addition, with adaptive cached connections, the system
throughput increases steadily with the number of index nodes.
In contrast, the system throughput with the ad-hoc connections

10

www.manaraa.com

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

5 10 15 20 25 30 35E
xa

ct
-Q

ue
ry

 T
hr

ou
gh

pu
t (

in
 x

 1
00

0
op

s/
se

c)

of Index Nodes

Adaptive cached connections
Ad-hoc point-to-point connections

(a) Exact-match Query (Q1) Throughput

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

5 10 15 20 25 30 35

M
ul

ti-
di

m
en

si
on

al
-Q

ue
ry

 T
hr

ou
gh

pu
t

(in
 x

 1
00

0
op

s/
se

c)

of Index Nodes

(b) Multi-dimensional Query (Q2) Throughput

Fig. 7. Performance of Distributed Indexes

approach degrades when the number of index nodes increases
to large values. The reason is that in the experiment setting the
submitted workload is proportional to the system size; how-
ever, the approach to create ad-hoc point-to-point connections
cannot handle this big workload. When the system reaches the
threshold, the throughput begins to decrease.

Figure 7(b) shows the system throughput when using the
distributed index to process multi-dimensional queries in var-
ious system sizes. We can observe that the system achieves
almost linear throughput with respect to the increasing number
of index nodes. In our experiment setting, the more index
nodes in the systems, the more job requests will be populated.
However, with the efficient support of the distributed kd-tree-
like index, the system can comfortably handle these queries.
The system is therefore able to scale well.

C. Data Freshness

In this experiment, we measure the data freshness that ES2

can provide for OLAP queries. In other words, when an ad-hoc
OLAP job is launched on a dataset that is being simultaneously
manipulated by OLTP operations, we measure how older is the
visible version of the dataset to the OLAP job, compared to
the up-to-date version of the dataset.

In particular, we setup a 64-node cluster in awan and insert
different sizes of data (32GB to 512GB). In our experiment,
each record maintains a maximum of 8 versions. We employ
5 cluster nodes to submit updates to the system continuously
at the rate of 100 operations/sec. The updates follow uniform
distribution or normal distribution. In the diagrams, we use U
and N to denote the uniform updates and normally distributed
updates, respectively. Two metrics are used in the benchmark.
In a sequential scan starting at t0, when reading record r, we
get the ith version, whose timestamp is t1. As defined by ES2,
t1 ≤ t0 and r does not have any other version between t1 and
t0. After the scan operator completes, the latest version of r is
j and the timestamp is t2. The version difference regarding to
r is j−i and the time delay is t2−t1. For comparison purpose,
we use another sequential scan approach, which always gets
the latest version. Namely, when it reads r, it get r’s current
latest version. We use es2 and recent to represent the two
sequential scan approaches.

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500 550
M

ax
im

al
 V

er
si

on
 D

iff
er

en
ce

Size of Data (GB)

U,es2
U,recent

N,es2
N,recent

Fig. 8. The Maximal Version Difference

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400 450 500 550

A
ve

ra
ge

 V
er

si
on

 D
iff

er
en

ce

Size of Data (GB)

U,es2
U,recent

N,es2
N,recent

Fig. 9. The Average Version Difference

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350 400 450 500 550

M
ax

im
al

 T
im

e
D

iff
er

en
ce

 (
se

c)

Size of Data (GB)

U,es2
U,recent

N,es2
N,recent

Fig. 10. The Maximal Time Delay

Figure 8 and Figure 9 show the maximal and average
version difference among all records, respectively. When the
data size increases, it incurs more overhead to scan the
dataset. Hence, both es2 and recent provide a stale version.
However, scanning 512GB dataset just leads to maximal 8

11

www.manaraa.com

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500 550

A
ve

ra
ge

 T
im

e
D

iff
er

en
ce

 (
se

c)

Size of Data (GB)

U,es2
U,recent

N,es2
N,recent

Fig. 11. The Average Time Delay

version difference. In the experiments, we get two unexpected
observations. First, recent does not provide a more “fresh”
result than es2, even it always read the latest version. This is
because in ES2, multiple cluster nodes start the scanning in
parallel, which is quite efficient. Second, the update pattern
does not affect the “freshness”. Uniform updates generate a
similar result as the normally distributed ones. For such a large
dataset, a specific record will not get too much updates, even
in a skewed distribution.

Figure 10 and Figure 11 show the maximal and average
time delay. We get a similar result as in the version difference
case. Scanning 512GB dataset only incurs a maximal delay of
90 seconds. In most cases, such delay is acceptable. Users do
not mind to get a global statistics, which provides a view for
the system of 90 seconds ago.

Based on experimental results above, ES2 can provide for
most OLAP queries a fresh and consistent snapshot of the data
which are simultaneously manipulated by OLTP operations.

VIII. CONCLUSION

In this paper, we propose a new system architecture for
supporting database operations on the cloud. We describe our
storage system, ES2 – an elastic cloud data storage system,
which has been designed to support both OLTP and OLAP
workloads efficiently within the same storage and processing
system. The system provides efficient data loading from dif-
ferent sources, flexible data partitioning scheme, index and
parallel sequential scan. We also present experimental results
which demonstrate the efficiency of ES2. The results confirm
the benefit of providing distributed indexes and accesses to
the data for both OLTP and OLAP queries. We are integrating
ES2 with other major components of the epiC cloud system
[10], and we will benchmark the whole system in the near
future.

ACKNOWLEDGMENT

The work in this paper was in part supported by the
Singapore Ministry of Education Grant No. R-252-000-394-
112 under the project name of Utab. We would also like to
thank the anonymous reviewers for their insightful comments.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a distributed
storage system for structured data,” in OSDI, 2006, pp. 205–218.

[2] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:
Yahoo!’s hosted data serving platform,” PVLDB, vol. 1, no. 2, pp. 1277–
1288, 2008.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in SOSP, 2007, pp. 205–220.

[4] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
2010.

[5] Apache Hadoop. http://wiki.apache.org/hadoop.
[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,

S. Antony, H. Liu, and R. Murthy, “Hive - a petabyte scale data
warehouse using hadoop,” in ICDE, 2010, pp. 996–1005.

[7] Apache Pig. http://hadoop.apache.org/pig/.
[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

distributed data-parallel programs from sequential building blocks,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, 2007.

[9] H. Plattner, “A common database approach for oltp and olap using an
in-memory column database,” in SIGMOD, 2009, pp. 1–2.

[10] The epiC project. http://www.comp.nus.edu.sg/∼epic/.
[11] C. Chen, G. Chen, D. Jiang, B. C. Ooi, H. T. Vo, S. Wu, and Q. Xu,

“Providing scalable database services on the cloud,” in Wise, 2010.
[12] Q. H. Vu, M. Lupu, and B. C. Ooi, Peer-to-Peer Computing: Principles

and Applications. Springer Publishing Company, Incorporated, 2009.
[13] D. J. DeWitt and J. Gray, “Parallel database systems: The future of

database processing or a passing fad?” SIGMOD Rec., vol. 19, pp. 104–
112, 1991.

[14] E. Friedman, P. Pawlowski, and J. Cieslewicz, “Sql/mapreduce: a
practical approach to self-describing, polymorphic, and parallelizable
user-defined functions,” PVLDB, vol. 2, pp. 1402–1413, 2009.

[15] Greenplum MapReduce. http://www.greenplum.com/technology/mapreduce/.
[16] A. Segev and W. Fang, “Currency-based updates to distributed materi-

alized views,” in ICDE, 1990, pp. 512–520.
[17] R. Hull and G. Zhou, “A framework for supporting data integration using

the materialized and virtual approaches,” SIGMOD Rec., vol. 25, no. 2,
pp. 481–492, 1996.

[18] A. Labrinidis and N. Roussopoulos, “Exploring the tradeoff between
performance and data freshness in database-driven web servers,” The
VLDB Journal, vol. 13, no. 3, pp. 240–255, 2004.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in SIGMOD, 2008, pp.
1099–1110.

[20] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “SCOPE: easy and efficient parallel processing of massive
data sets,” PVLDB, vol. 1, no. 2, pp. 1265–1276, 2008.

[21] H. T. Vo, C. Chen, and B. C. Ooi, “Towards elastic transactional cloud
storage with range query support,” PVLDB, vol. 3, no. 1, pp. 506–517,
2010.

[22] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
relations for cache performance,” in VLDB, 2001, pp. 169–180.

[23] G. P. Copeland and S. Khoshafian, “A decomposition storage model,”
in SIGMOD, 1985, pp. 268–279.

[24] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b+-tree based
indexing for cloud data processing,” PVLDB, vol. 3, no. 1, pp. 1207–
1218, 2010.

[25] J. Wang, S. Wu, H. Gao, J. Z. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in SIGMOD, 2010, pp. 591–602.

[26] M. Lupu, B. C. Ooi, and Y. C. Tay, “Paths to stardom: calibrating the
potential of a peer-based data management system,” in SIGMOD, 2008,
pp. 265–278.

[27] H. T. Vo, S. Wu, and B. C. Ooi, “Towards generalized framework
for indexing cloud data,” Technical Report, National University of
Singapore, School of Computing. TRA11/10, 2010.

[28] P.-A. Larson, “Grouping and duplicate elimination: Benefits of early
aggregation,” in Microsoft Technical Report, 1997.

[29] Y. Cao, G. C. Das, C.-Y. Chan, and K.-L. Tan, “Optimizing complex
queries with multiple relation instances,” in SIGMOD, 2008, pp. 525–
538.

[30] G. Graefe, “Query evaluation techniques for large databases,” ACM
Comput. Surv., vol. 25, no. 2, pp. 73–169, 1993.

[31] HDFS Community Forum - https://issues.apache.org/jira/browse/HDFS-
236.

[32] TPC-H Benchmark. http://www.tpc.org/tpch/.

12

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

